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Abstract. The re-entrant phenomenon is studied in the antiferromagnetic king model on 
a square lattice with the bonds decorated with two and three-coupled spin f variables 
(dimer and trimer) in two different scenarios. In the first one ferromagnetic competing 
decorated bonds are anneal diluted in the system. The exact phase diagrams of the critical 
temperature as a function of the concentration and of the competition parameter are 
obtained. In contrast to the single spin bond decoration, a double re-entrant behaviour is 
observed. The bond percolation threshold P, = (1 - 1 / d ) / 2  is achieved and it is indepen- 
dent of the decorating variable. In the second scenario the pure axial decorated system is 
studied. The analytical temperature against competition parameter phase diagram and the 
specific heat are calculated and discussed. In this latter case multiple re-entrances are 
observed for a certain range of the competition parameter. The nature of this re-entrant 
phenomenon is discussed. 

1. Introduction 

Re-entrant phase transitions have been observed in a variety of physical systems, such 
as superconductors [ 1,2], liquid crystals [3,4], spin glasses [5] and adsorbed layers 
[63. Re-entrant phases have also appeared in the phase diagrams of different modei 
Hamiltonians. This phenomenon is characterised by the reappearance of a less ordered 
phase, following a more ordered one, as the temperature is lowered. For each physical 
system there is a distinct mechanism determining this reversal behaviour. In supercon- 
ductors containing magnetic impurities, such as La,-,Th, (Ce as impurity) a continuous 
transition from a magnetic system (Lace) to a nearly non-magnetic system (ThCe) is 
observed with a re-entrant behaviour for low concentrations of Th [l]. In granular 
superconductors a mean field theory [2] predicts that the lowering of the resistance 
below the transition temperature is followed by a rise at lower temperatures, although 
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in a recent calculation based on a self-consistent phase-phonon approximation this 
behaviour has not been found [7]. In liquid crystals it has been observed [3] that 
under high pressures the nematic phase reappears for temperatures lower than that of 
the smectic phase. More remarkably, a sequence of quadruple re-entrances has been 
found experimentally [4] in liquid crystals. Theoretical phase diagrams similar to the 
experimental one were obtained from calculations based on a frustrated spin-glass 
model [5]. Low field DC magnetisation measurements on the amorphous (FeMn) P B A ~  

alloy [6] show that two second-order phase transitions occur with the magnetisation 
going to zero at two temperatures. An x-ray diffraction study of krypton on graphite 
[ 81 shows a modulated re-entrant fluid phase separating the commensurate-incom- 
mensurate phases, connecting continuously onto the high temperature fluid phase. 
The helical Potts lattice-gas model has been used to explain the pressure-temperature 
phase diagram of krypton on graphite [8]. A re-entrant spin-glass phase has also been 
observed in the high temperature superconductor compound La2-,( Sr, Ba),CuOa for 
very small values of x in the insulator phase [9] and a re-entrant behaviour of the 
superconducting phase has been predicted if one is to rely on the existence of antifer- 
romagnetic underlying order to provide the pairing mechanism of the superconducting 
carriers [lo]. The spin-glass re-entrant phases are explained by a frustration and 
disorder mechanism in model Hamiltonians. Theoretical interest in the re-entrance 
phenomenon has also received considerable attention. Re-entrant phase diagrams in 
a spin-one Ising model with biquadratic interactions were obtained by renormalisation 
group [ 113 and Monte Carlo methods [ 121. It is explained by the competition between 
the ferromagnetic and the negative biquadratic coupling. A similar phenomenon has 
been found in the random bond Ising model [13] and in the BCC nearest-neighbour 
Ising antiferromagnet [ 141. In order to explain spin-glass behaviour in iron-aluminium 
alloys, a spin 4 competing Ising model has been studied [15] and a re-entrance is 
obtained. Also an amorphous Ising antiferromagnetic model [ 161 shows a re-entrance 
as a result of the competition. A decorated Ising model with competing interactions 
also shows re-entrant antiferromagnetic [ 171 and re-entrant ferromagnetic phases 
[ 17, 181. An in-plane antiferromagnet in a magnetic field exhibits a re-entrant second- 
order phase boundary as shown by an extended mean field theory [ 191. The re-entrant 
behaviour shown in these theoretical models differs in one aspect. Some of these 
models are pure, i.e., there is no disorder in the coupling constants [ l l -131 ,  while 
others are disordered [ 14-18]. However the competition between the coupling interac- 
tions is essential for the appearance of a re-entrant phase. For the disordered competing 
systems, when frustration is present, the role of the entropy in determining the minimum 
of the free energy can account for this phenomenon [18]. 

In this paper we study the antiferromagnetic square lattice Ising model decorated 
with complex unities of Ising spins as bond decoration. Our main interest is to 
understand the mechanisms that produce the multiple re-entrant phenomenon. It has 
been shown recently [17] that the present model randomly decorated with a single 
ferromagnetic D-vector-bond spin has a single re-entrant phase arising from the local 
diluted competing effects due to the decoration. Here we consider in addition to the 
single case ( D  = 1 of [17]) two species of complex unities of Ising spins as bond 
decoration: the dimer, a pair of antiferromagnetic coupled spins interacting ferromag- 
netically with site Ising spins, and the trimer, a set of three frustrated coupled spins 
interacting ferromagnetically with the site spins. In figure l ( a )  the single, dimer and 
trimer decoration are shown schematically. We note that there is no coupling between 
decorating bond spins belonging to distinct bonds. Therefore one is able to evaluate 
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l b )  l C )  

Figure 1. ( a )  Scheme for the monomer, dimer and trimer bond decoration. ( b )  Portion 
of random-decorated square lattice. ( c )  Portion of pure axial-decorated square lattice. 

exactly the effective ferromagnetic interaction produced by the decoration [ 17,201. 
For certain values of the coupling constants this effective interaction which is also 
temperature dependent, can be compared with the original homogeneous antiferromag- 
netic one and competing effects come into play in the system. Moreover the additional 
frustrated degrees of freedom present in the dimer and trimer decorated bonds should 
play an important role for the entropic term of the free energy in order to produce 
the multiple re-entrant phenomenon. To distinguish between the re-entrant 
phenomenon produced by the increasing of the entropy due to disorder and the one 
produced by the increasing of the entropy due to the presence of additional genuine 
degrees of freedom we consider the present model in two scenarios: one with isotropi- 
cally random annealed decorated bonds and one with pure axial decorated bonds. As 
we will see later on the latter shows a more pronounced multiple re-entrant 
phenomenon. In section 2, we study the competing random decorated model. We 
obtain the phase diagrams ( Tcxp)  and ( T,xa),  where T,, p and a stand for the transition 
temperature, the concentration of the decorated bonds and the competing coupling 
parameter, respectively. In section 3, the phase diagram ( Tcxa)  and the specific heat 
are obtained for the pure axial decorated model. These results are exact and show a 
multiple re-entrance behaviour. In section 4, the main results are summarised. 

2. Competing random decorated model 

2.1. Model Hamiltonian 

We consider an antiferromagnetic Ising model in a square lattice with nearest-neighbour 
interaction, -aJ, decorated with Ising spin classical variables, as described by the 
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Hamiltonian H = Z b  Hb, with the bond Hamiltonian Hb given by 

( 1 )  
M 

H b = d U l U 2 - f b  J S , ( A U ~ + A ' U ~ ) +  J,s ,s ,+~+p ( ( S P )  1 = l  

where f b  is the occupation parameter for the decorated-bond spins Sf, i.e., f b  = 1 (0) if 
the bond b is decorated (undecorated) and p is the chemical potential related to the 
annealing dilution. The decorating variables Sf interact among themselves, with an 
exchange interaction J, = ylJ, forming an open or closed ( S I + M  = Sf) finite chain of M 
spins. The Sf variables couple independently with the site variables v1 and m2 via the 
coupling constants AJ and A'J where A and A '  are arbitrary parameters. In figure l ( a ) ,  
we show the scheme of the decoration bonds and in figure l ( b )  a portion of the random 
decorated lattice. 

By performing the sum over the bond variables {SI, f b }  using the method of the 
decoration transformation [ 2 0 ] ,  we obtain for the partition function, 

Z N  = A Z N ( ~ i ,  77)ZO(Keff) ( 2 )  

where K ,  = P J I ,  77 = exp(Pp).  K,,  = PJeff and A( K , ,  77) are given respectively by 

K,,  = K + 4 In[( 1 + v X ) / (  1 + 7 Y ) ]  

A ( K i ,  17) = [(1+ v X ) ( l +  77Y)]'/'. 
(3) 

Here X and Y are given by the expressions appearing in table 1 for M = 1-3 bond 
decorating variables and K = PJ. Z,(K,,) is the partition function of the two- 
dimensional Ising model on a square lattice with the effective temperature-dependent 
interaction given by expression (3). The fugacity associated with the bond occupation 
variable fb can be eliminated by imposing the annealed condition that the thermal 
average'of t b  should be equal to the concentration p of decorated bonds, i.e., 

( f b ) =  lim ( 1 / 2 N ) ( a / a ( P p )  In Z = p .  
N-02 

( 4 )  

After a direct calculation, we obtain for the unwanted fugacity the result, 

77 = [ - S +  ( S 2  + 4 p R ) ' l 2 ] / 2 R  ( 5 )  

Table 1. Analytical expressions for X and Y obtained from the partial summation over 
the bond variables for the monomer ( M  = l ) ,  dimer ( M  = 2) and trimer ( M  = 3) .  

M = l  X 2 cosh(2K) 
Y 2 

M = 2  X 2eyK cosh[2K(1 + A ) ] + 2 e - Y K  
Y 2e-yK c o ~ h [ 2 K ( I - A ) ] + 2 e + ~ ~  

M = 3  X 2{exp[(y, + y2+ ydK1 cosh[K(2+2A + A ,  + A , ) l + e x p [ ( - ~ ,  - y2+ y3)K 
x cosh[K(2+2A - A ,  -A,)]+exp(y, - y2-  y3)K]  cosh[K(A, f A 2 ) ]  

+ e x p [ ( y , + ~ ~ - ~ ~ ) K l c o s h [ K A ~ + A ~ ) l }  

xcosh[K(h,  -Az)l+exp[(y, - y2- y3)K]  cosh[K(2-2A + A ,  - A 2 ) ]  
+ exp[(- y, + y2 - y3)K]  cosh[K(2A - 2 + A  , - A2)]} 

Y 2{exp[(y,+y2+ Y ~ K I  cosh[K(,A, -A2)l+exp[(-y,  - y2+ ydK1 
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where 

s =+( 1 + E - 2 p ) X  + $ ( l -  E - 2 p )  Y 

R = X Y ( l - p )  

and 

is the nearest-neighbour-pair correlation function. The transition temperature is given 
by Onsager's result 

sinh 2 K,, = * 1 .  (7) 

The + (-) sign holds for the ferromagnetic (antiferromagnetic) critical temperature. 
The phase diagram of the critical temperature as a function of the concentration of 
the decorating bonds can be analytically obtained from the previous equation. Eliminat- 
ing 77 from (7) with help of ( 5 ) ,  we obtain the phase diagram T,xp, 

p = { B X Y  + { [ ( X  + Y )  + E(X - Y ) ] } / (  B - ' +  B X Y  + x + Y )  (8) 

where B = (C  - 1 ) / ( X  - C Y )  and C = e x p ( 2 a K ) [ a +  1 1 .  
The phase diagram of the critical temperature against the competing parameter a 

which measures the ratio between the intersite antiferromagnetic coupling and the 
ferromagnetic one between site and bond spins ( A  = A ' =  1 )  is obtained by inverting 
(7) ,  that is 

a =;K ln{( f i*  1)[(1+ T X ) / ( ~  + 7Y) l j  (9) 
with 77 given by equation ( 5 ) .  

2.2. The phase diagrams 

In figure 2 we show the normalised temperature against the concentration phase diagram 
for M = 1,2 (monomer and dimer), for several values of the competition parameter 
a. The trimer decoration has a behaviour similar to the dimer case. The appearance 
of both the ferromagnetic (high concentrations) and antiferromagnetic (low concentra- 
tions) phases occur for values of 0 < a < 1 for all cases (see figure 2(a)  of [17]), but 
in figure 2 to avoid misunderstanding we show only the antiferromagnetic phase. We 
observe that a re-entrance with two transition temperatures occurs for all value of M 
for concentrations p > p c ,  where p c  = (1 - a / 2 ) 2 .  In figure 2( 6) a double re-entrance, 
with three transition temperatures, occurs for M > 2 ,  p > + ,  and for certain values of 
the coupling parameters of the decorating variables with the spins of the lattice. The 
multiple re-entrance is very sensitive to the values of these parameters. For example, 
if we change A from 0.8 to 0.5, keeping all other parameters at the same values, the 
double re-entrance shown in figure 2 disappears. 

In figure 3 we present the reduced temperature against the competition parameter 
phase diagram for the cases M = 1,2 and for several values of the concentration (the 
case M = 3 is similar to the case M = 2). The abrupt appearance at pc of the single 
re-entrant phase is evident from these figures. The behaviour of the p = 0.14 curve is 
completely different from that of p = 0.15. For M = 1 the ferromagnetic phase disap- 
pears for a > 1 (figure 3 ( a ) ) .  For M = 2 the ferromagnetic ground state becomes 
unstable at a, = y + 2A. For a 3 a,  the sequence of transitions from the ground state 
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W 

a 

CONCENTRATION 

Figure 2. Normalised critical temperature against concentration phase diagram for the 
antiferromagnetic-paramagnetic boundaries of random-decorated model: ( a )  M = 1 
monomer decoration for a = 0.4,0.8, 1.0 and 1.3; ( b )  M = 2 dimer decoration with h = 0.8 
and y =  -0.1 for a = O S ,  1.25, 1.5, 1.55 and 1.65. 

is antiferro-para-antiferro-para. For values smaller than a,, and within a certain 
range of concentrations, the transition sequence ferro-para-antiferro-para. Moreover, 
as long as we keep the antiferromagnetic coupling between the spins at the lattice sites 
a = O  is the other limit of the ferromagnetic phase. 

3. Axial decorated model 

3.1. Model description and general solution 

In this section we consider the two-dimensional squar latti 1 in model decorated 
in one direction (axial decoration) with classical variables, as in the previous section. 
In this case no randomness is present. The Hamiltonian of the system is given by 

H = JO z c / , m c / , , m + l +  aJ z c / . m c / + l . m  (X JSi,/(Aic/,m + A i c / + I , m ) )  -X Jisi,iSi+1,/- (10) 

The spins on the lattice sites (al,,) interact with coupling constant J o =  rJ along 
the y direction and with coupling constant -aJ along the x direction. The decorating 
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COMPETITION PARAMETER 

Figure 3. Reduced critical temperature against competition parameter phase diagram of 
the random-decorated model: ( a )  M = 1 monomer decoration for p = 0.14, 0.15, 0.84 and 
1.0; ( b )  M = 2  dimer decoration for p=O.14, 0.15, 0.7 and 0.9 with A =0.8 and y=O.1 
(full curve) ferromagnetic (F) and (broken curve) antiferromagnetic (AF) boundaries. 

variables Si,, are located in all bonds along the x direction and they interact with site 
spins with coupling constants A J  and A:J  for arbitrary A i  and A:. The decorating 
variables interact with each other with coupling constant .Ti = yJ. The sum over i runs 
over all decorating bond variables. Figure l ( c )  shows a portion of the lattice. 

By a similar procedure, as before, we obtain after performing the trace over the 
decorating variables, an Ising model on a square lattice with an interaction KO = PI,, 
along the y direction with an effective interaction along the x direction, given by 

Keff = -aK +ln(X/ Y)/2 (11) 
where X and Y are given in table 1, and K = PJ. 

The transition temperatures are obtained from the solutions of the equation, 

sinh(2Ko) sinh(2Ke,) = kl (12) 
where the +( -) stands for the ferromagnetic (antiferromagnetic) phase. 

The phase diagram temperature against the competition parameter a, which 
measures the ratio between the intersites antiferromagnetic coupling and the ferromag- 
netic one between site and bond spins ( h i  = A :  = l), is obtained analytically from the 
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previous equation, that is 

a = - l n [ y (  1 
X sign(K, cosh(2Ko* 1) 

2K sinh( 2 K O )  

The specific heat is obtained from the free energy as 

C H  = -k&2a2/a@2(@F)I H .  (14) 

The free energy of the model is 

F = -( 1/ kB T )  In( DA,,,) (15)  

and A,,, is the largest eigenvalue of the partition function of this where D = 
asymmetric lattice with coupling constants Jo and Jeff, 

ln(Amax) =; ln12 (16) 

with 

fl = cosh(2Keff) cosh(2K*) -sinh(2Keff) sinh(2K*) cos w 

K *  = 4 lnlcoth Kol. 

(17)  

(18) 

and 

3.2. Phase diagram T,XQ and specijic heat 

In figure 4 we present the phase diagram for M = 1,2,3. The system shows three 
phases: paramagnetic (P), ferromagnetic (F) and a mixed (M) phase. The ground 
state of the mixed phase is characterised by an antiferromagnetic configuration for the 
site spins. Figure 4(a) shows the single re-entrance for the monomer decoration. The 
dimer decoration can exhibit a single re-entrance as well as a double re-entrance, as 
shown in figure ( b ) .  The multiple re-entrance (three or more) is achieved by decorating 
the bonds with more than two variables as presented in figure 4( c)  for the M = 3 case. 
In these figures, a sequence of five transitions occurs for values of a in the range of 
0.175 for the dimer and 0.345 for the trimer, alternating between the mixed, paramag- 
netic and ferromagnetic phases. Note that for a = 0.315 we have a sequence of seven 
transitions in the M = 3 case as shown in figure 4( c). These transitions will be more 
evident in the specific heat calculations. Again, by comparing the three curves in figure 
4( b )  of the M = 2 case, and also the curves in figure 4(c) for the M = 3 case, one can 
see how sensitive the phase diagram is to the values of the exchange couplings of the 
decorating variables. We point out that the sign of the coupling constant on the 
undecorated direction is irrelevant for the transition lines. Only the configurations of 
the site spins will be affected by that sign, but the shape of the transition lines remain 
unchanged. We illustrated this by presenting the phase diagram with Jo>O for the 
dimer case and with J,<O for the trimer case. The specific heat for the dimer and 
trimer decoration, for CY = 0.175 and Q = 0.345, respectively (these points are indicated 
in figures 4(b) and 4(c)) are presented in figure 5 .  The specific heat results show 
clearly the sequence of phase transitions. For T = 0.07 the specific heat for the dimer 
decoration, shown in figure 5 ( a ) ,  has a double peak indicating the two transitions F-P 
and P-F. This is not clear from figure 5 ( a ) .  However, in figure 5(b)  we present a 
detail of this double peak on the specific heat appearing at T-0.07. Similarly, for 
the trimer decoration a double peak on the specific heat occurs for temperatures close 
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Figure 4. Reduced critical temperature against competition parameter phase diagram of 
the pure axial-decorated model. ( a )  M = 1 monomer decoration. ( b )  M = 2 dimer decor- 
ation with A = 1.0 and y=-1.6 (full curve), y =  -1.8 (chain curve) and y = 2 . 0  (broken 
curve). ( c )  M = 3 trimer decoration with y ,  = -yz=O.l ,  y, = -2.0, A = 1.0, A ,  =0.3 and 
A,=0.5 for r =  -7.0 (full curve) and r = -10 (broken curve). 

to T =  1.2 (see figure 5 ( c ) ) .  On the other hand, the peaks in the low-temperature 
regime seem to be associated with the onset of local ordering within the decorating 
complex in the presence of two possible ordering configurations (Tftttt or tJ.tJ..TJ.) 
of the site spins on the extremes of the decorated bond, as a function of the competing 
parameter a. This interpretation explains the slight shift in the temperature in which 
this peak occurs in the two different site configurations. This, we have obtained by 
analysing, in detail, the specific heat in the vicinity of T = 0. This peak occurs at two 
different, very low temperatures, fixed for all values of a separated by the value a = 0.31. 

4. Concluding remarks 

We have studied a square-lattice Ising model decorated with dimers or trimers with 
competing interactions in two different scenarios. In the first case we considered a 
random annealed isotropically decorated lattice and in the second case we studied the 
pure axial-decorated model in which only the bonds in one direction are decorated. 
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Figure 5. Specific heat against reduced temperature of the pure axial-decorated model: 
( a )  for M = 2 dimer decoration with CY =0.175, y = -1.8 and A = 1.0, ( b )  reduced scale of 
figure 5 ( a )  pointing out the double peak around T-0.07; (c)  for M = 3 trimer decoration 
with a = 0.34 and with the same parameters of figure 4(c). At T =  1.2 a double peak occurs 
in the same fashion as shown in figure 5 ( b ) .  In all figures the vertical lines are guides for 
the eyes. 

Our intention was to show that if we increase the complexity of the decorating system 
we can obtain, for well chosen ranges of the competing parameters, multiple re-entrant 
behaviour for the ordered phases of the site spins. We succeed in showing this, with 
the most remarkable results appearing for the axial decorated cases. It is possible that 
even more complex behaviour can be obtained for choices of parameter sets different 
from the ones we have used in this paper. We made no attempt to sweep all the 
parameter space of the different models. 

In general, the appearance of the multiple re-entrant behaviour when we increase 
the complexity of the decorating system can be explained in terms of the minimisation 
of the free energy by the increase of the entropy of the frustrated system [18]. The 
minimum of the internal energy defines the ground state ( T  = 0). As the temperature 
increases the gain in the entropy, the negative contribution to the free energy ( - T S ) ,  
can exceed the loss of the free energy due to the internal energy term. In particular, 
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let us consider the monomer decorated case, in which the decorating variable interacts 
with the sum of the site spins, while the site spins interact with each other with an 
antiferromagnetic coupling -aJ, i.e., the decorated-bond Hamiltonian is Hb = 
JS( U ,  + U*)  + aJv,a2. If the value of a is smaller, but close to 1 it should be energetically 
more advantageous for the systems, as the temperature is raised from zero, to assume 
the antiferromagnetic configuration, in which case the second parcel of the Hamiltonian 
is minimised and the spin S in the first parcel becomes free to contribute for the 
entropy of the system. For the disordered model an additional mechanism could come 
into play to account for re-entrances in the phase diagram, as discussed in [18]. At a 
given concentration of diluted bonds for which the ground state is paramagnetic the 
increasing of temperature can induce the bonds to move resulting in an ordered phase 
in order to minimise the free energy. 

In summary, for the competing random model we obtained a single re-entrance 
for all decorating variables for concentrations p > (1 - 4 / 2 ) / 2 ,  while double re- 
entrances appeared for two or more decorating variables and for p > f. The ferromag- 
netic phase becomes unstable for CY > 1 in the monomer decoration, and for a > y + 2A 
for the two other types of decoration. In the axial-decorating model we showed the 
multiple re-entrance phenomena with the appearance of a sequence of several transi- 
tions. Also, the results show that the sign of the coupling constants in the undecorated 
direction affects the configuration of the site spins, but keeps unchanged the transition 
lines. Finally, we remark that the results presented in this paper are all exact, once 
they rely on the pure 2~ Ising square-lattice Onsager solution. 
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